26 research outputs found

    Non-intrusive uncertainty quantification

    Get PDF

    Offshore Wind Farm Research at the NWO Institutes

    Get PDF
    Fundamental scientific research is essential to take the necessary next step in offshore wind farm innovation. The NWO scientific research institutes play a central role in the Dutch knowledge infrastructure for disseminating scientific discoveries into industrial innovations. Multiple research groups at CWI, NIOZ, FOM, and DIFFER are already active in the fields connected to offshore wind power. The objective of this report is to improve the coordination between these groups by informing them of each other’s research activities

    Summary of the Workshop Science & the Energy Challenge on Offshore Wind, Part 1

    Get PDF
    The CWI is the national scientific research center on mathematics and computer science of the Netherlands Organization for Scientific Research (NWO). Its mission is the discovery of knowledge and the transfer to society and industry including energy topics. Multiple groups are working within the energy theme on computational fluid dynamics, plasma physics, smart power grids, and biofuels. The goal of the workshop is to discuss the long-­term European scientific challenges in offshore wind energy and to translate them to the strengths of the Dutch research environment

    Subcell resolution in simplex stochastic collocation for spatial discontinuities

    Get PDF
    Subcell resolution has been used in the Finite Volume Method (FVM) to obtain accurate approximations of discontinuities in the physical space. Stochastic methods are usually based on local adaptivity for resolving discontinuities in the stochastic dimensions. However, the adaptive refinement in the probability space is ineffective in the non-intrusive uncertainty quantification framework, if the stochastic discontinuity is caused by a discontinuity in the physical space with a random location. The dependence of the discontinuity location in the probability space on the spatial coordinates then results in a staircase approximation of the statistics, which leads to first-order error convergence and an underprediction of the maximum standard deviation. To avoid these problems, we introduce subcell resolution into the Simplex Stochastic Collocation (SSC) method for obtaining a truly discontinuous representation of random spatial discontinuities in the interior of the cells discretizing the probability space. The presented SSC–SR method is based on resolving the discontinuity location in the probability space explicitly as function of the spatial coordinates and extending the stochastic response surface approximations up to the predicted discontinuity location. The applications to a linear advection problem, the inviscid Burgers’ equation, a shock tube problem, and the transonic flow over the RAE 2822 airfoil show that SSC–SR resolves random spatial discontinuities with multiple stochastic and spatial dimensions accurately using a minimal number of samples

    Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification

    Get PDF
    Multi-element uncertainty quantification approaches can robustly resolve the high sensitivities caused by discontinuities in parametric space by reducing the polynomial degree locally to a piecewise linear approximation. It is important to extend the higher degree interpolation in the smooth regions up to a thin layer of linear elements that contain the discontinuity to maintain a highly accurate solution. This is achieved here by introducing Essentially Non-Oscillatory (ENO) type stencil selection into the Simplex Stochastic Collocation (SSC) method. For each simplex in the discretization of the parametric space, the stencil with the highest polynomial degree is selected from the set of candidate stencils to construct the local response surface approximation. The application of the resulting SSC–ENO method to a discontinuous test function shows a sharper resolution of the jumps and a higher order approximation of the percentiles near the singularity. SSC–ENO is also applied to a chemical model problem and a shock tube problem to study the impact of uncertainty both on the formation of discontinuities in time and on the location of discontinuities in space

    Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation

    Get PDF
    The present study focuses on the uncertainty quantification of an aeroelastic instability system. This is a classical dynamical system often used to model the flow induced oscillation of flexible structures such as turbine blades. It is relevant as a preliminary fluid-structure interaction model, successfully demonstrating the oscillation modes in blade rotor structures in attached flow conditions. The potential flow model used here is also significant because the modern turbine rotors are, in general, regulated in stall and pitch in order to avoid dynamic stall induced vibrations. Geometric nonlinearities are added to this model in order to consider the possibilities of large twisting of the blades. The resulting system shows Hopf and period-doubling bifurcations. Parametric uncertainties have been taken into account in order to consider modeling and measurement inaccuracies. A quadrature based spectral uncertainty tool called polynomial chaos expansion is used to quantify the propagation of uncertainty through the dynamical system of concern. The method is able to capture the bifurcations in the stochastic system with multiple uncertainties quite successfully. However, the periodic response realizations are prone to time degeneracy due to an increasing phase shifting between the realizations. In order to tackle the issue of degeneracy, a corrective algorithm using constant phase interpolation, which was developed earlier by one of the authors, is applied to the present aeroelastic problem. An interpolation of the oscillatory response is done at constant phases instead of constant time and that results in time independent accuracy levels

    Clustering-based collocation for uncertainty propagation with multivariate correlated inputs

    Get PDF
    In this article, we propose the use of partitioning and clustering methods as an alternative to Gaussian quadrature for stochastic collocation (SC). The key idea is to use cluster centers as the nodes for collocation. In this way, we can extend the use of collocation methods to uncertainty propagation with multivariate, correlated input. The approach is particularly useful in situations where the probability distribution of the input is unknown, and only a sample from the input distribution is available. We examine several clustering methods and assess their suitability for stochastic collocation numerically using the Genz test functions as benchmark. The proposed methods work well, most notably for the challenging case of nonlinearly correlated inputs in higher dimensions. Tests with input dimension up to 16 are included. Furthermore, the clustering-based collocation methods are compared to regular SC with tensor grids of Gaussian quadrature nodes. For 2-dimensional uncorrelated inputs, regular SC performs better, as should be expected, however the clustering-based methods also give only small relative errors. For correlated 2-dimensional inputs, clustering-based collocation outperforms a simple adapted version of regular SC, where the weights are adjusted to account for input correlatio
    corecore